Section 2.5

The Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree n, where $n>0$, then f has at least one zero in the complex number system.

Linear Factorization Theorem

If $\mathrm{f}(\mathrm{x})$ is a polynomial of degree n , where $\mathrm{n}>0$, then f has precisely n linear factors

$$
f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are complex numbers.

The Rational Zero Test

If the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ has integer coefficients, every rational zero of f has the form

$$
\text { Rational zero }=\frac{p}{q}
$$

where p and q have no common factors other than 1 , and

$$
\begin{aligned}
& p=\text { a factor of the constant term } a_{0} \\
& q=\text { a factor of the leading coefficient } a_{n}
\end{aligned}
$$

Complex Zeros Occur in Conjugate Pairs

Let $f(x)$ be a polynomial function that has real coefficients. If $a+b i$, where $b \neq 0$, is a zero of the function, the conjugate $a-b i$ is also a zero of the function.

Problem 1. Find all rational zeros of the function, and write the polynomial as a product of linear factors.
a) $f(x)=x^{3}-10 x^{2}+31 x-30$
b) $f(x)=2 x^{3}-9 x^{2}+12 x-4$
c) $f(x)=2 x^{4}-9 x^{3}+7 x^{2}+9 x-9$

Problem 2. Use the given zero to find all the zeros of the function, and write the polynomial as a product of linear factors.
a) $f(x)=x^{3}-x^{2}+4 x-4, x=2 i$
b) $x^{3}-4 x^{2}+x+26, x=3+2 i$
c) $f(x)=x^{4}+2 x^{3}-4 x^{2}-26 x-21, x=-2+\sqrt{3} i$

